首页
公司简介
产品目录
轴承新闻
轴承知识
型号对照
联系我们

轴承型号查询

型号:
品牌:
内径:
外径:
厚度:
轴承品牌
热卖轴承

当前位置:公司主页 》轴承知识 》超硬刀具选型及在硬车削加工中的应用(二)

超硬刀具选型及在硬车削加工中的应用(二)

作者:xingyang                         时间:2010-12-02

轴承及轴承相关技术文章(轴承型号查询网提供) 关键字:轴承,   生物流变学研究人体或其他动植物中有关的流体力学问题,例如血液在血管中的流动,心、肺、肾中的生理流体运动和植物中营养液的输送。此外,还研究鸟类在空中的飞翔,动物在水中的游动,等等。  因此,流体力学既包含自然科学的基础理论,又涉及工程技术科学方面的应用。此外,如从流体作用力的角度,则可分为流体静力学、流体运动学和流体动力学;从对不同“力学模型”的研究来分,则有理想流体动力学、粘性流体动力学、不可压缩流体动力学、可压缩流体动力学和非牛顿流体力学等。  流体力学的研究方法  进行流体力学的研究可以分为现场观测、实验室模拟、理论分析、数值计算四个方面:  现场观测是对自然界固有的流动现象或已有工程的全尺寸流动现象,利用各种仪器进行系统观测,从而总结出流体运动的规律,并借以预测流动现象的演变。过去对天气的观测和预报,基本上就是这样进行的。  不过现场流动现象的发生往往不能控制,发生条件几乎不可能完全重复出现,影响到对流动现象和规律的研究;现场观测还要花费大量物力、财力和人力。因此,人们建立实验室,使这些现象能在可以控制的条件下出现,以便于观察和研究。  同物理学、化学等学科一样,流体力学离不开实验,尤其是对新的流体运动现象的研究。实验能显示运动特点及其主要趋势,有助于形成概念,检验理论的正确性。二百年来流体力学发展史中每一项重大进展都离不开实验。  模型实验在流体力学中占有重要地位。这里所说的模型是指根据理论指导,把研究对象的尺度改变(放大或缩小)以便能安排实验。有些流动现象难于*理论计算解决,有的则不可能做原型实验(成本太高或规模太大)。这时,根据模型实验所得的数据可以用像换算单位制那样的简单算法求出原型的数据。  现场观测常常是对已有事物、已有工程的观测,而实验室模拟却可以对还没有出现的事物、没有发生的现象(如待设计的工程、机械等)进行观察,使之得到改进。因此,实验室模拟是研究流体力学的重要方法。理论分析是根据流体运动的普遍规律如质量守恒、动量守恒、能量守恒等,利用数学分析的手段,研究流体的运动,解释已知的现象,预测可能发生的结果。理论分析的步骤大致如下:  首先是建立“力学模型”,即针对实际流体的力学问题,分析其中的各种矛盾并抓住主要方面,对问题进行简化而建立反映问题本质的“力学模型”。流体力学中最常用的基本模型有:连续介质、牛顿流体、不可压缩流体、理想流体、平面流动等。  其次是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。  从基本概念到基本方程的一系列定量研究,都涉及到很深的数学问题,所以流体力学的发展是以数学的发展为前提。反过来,那些经过了实验和工程实践考验过的流体力学理论,又检验和丰富了数学理论,它所提出的一些未解决的难题,也是进行数学研究、发展数学理论的好课题。按目前数学发展的水平看,有不少题目将是在今后几十年以内难于从纯数学角度完善解决的。  在流体力学理论中,用简化流体物理性质的方法建立特定的流体的理论模型,用减少自变量和减少未知函数等方法来简化数学问题,在一定的范围是成功的,并解决了许多实际问题。  对于一个特定领域,考虑具体的物理性质和运动的具体环境后,抓住主要因素忽略次要因素进行抽象化也同时是简化,建立特定的力学理论模型,便可以克服数学上的困难,进一步深入地研究流体的平衡和运动性质。  20世纪50年代开始,在设计携带人造卫星上天的火箭发动机时,配合实验所做的理论研究,正是依*一维定常流的引入和简化,才能及时得到指导设计的流体力学结论。  此外,流体力学中还经常用各种小扰动的简化,使微分方程和边界条件从非线性的变成线性的。声学是流体力学中采用小扰动方法而取得重大成就的最早学科。声学中的所谓小扰动,就是指声音在流体中传播时,流体的状态(压力、密度、流体质点速度)同声音未传到时的差别很小。线性化水波理论、薄机翼理论等虽然由于简化而有些粗略,但都是比较好地采用了小扰动方法的例子。  每种合理的简化都有其力学成果,但也总有其局限性。例如,忽略了密度的变化就不能讨论声音的传播;忽略了粘性就不能讨论与它有关的阻力和某些其他效应。掌握合理的简化方法,正确解释简化后得出的规律或结论,全面并充分认识简化模型的适用范围,正确估计它带来的同实际的偏离,正是流体力学理论工作和实验工作的精华。  流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不*计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。  数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了“计算流体力学”。  从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。数值计算方法最近发展很快,其重要性与日俱增。  解决流体力学问题时,现场观测、实验室模拟、理论分析和数值计算几方面是相辅相成的。实验需要理论指导,才能从分散的、表面上无联系的现象和实验数据中得出规律性的结论。反之,理论分析和数值计算也要依*现场观测和实验室模拟给出物理图案或数据,以建立流动的力学模型和数学模式;最后,还须依*实验来检验这些模型和模式的完善程度。此外,实际流动往往异常复杂(例如湍流),理论分析和数值计算会遇到巨大的数学和计算方面的困难,得不到具体结果,只能通过现场观测和实验室模拟进行研究。  流体力学的展望  从阿基米德到现在的二千多年,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。  今后,人们一方面将根据工程技术方面的需要进行流体力学应用性的研究,另一方面将更深入地开展基础研究以探求流体的复杂流动规律和机理。后一方面主要包括:通过湍流的理论和实验研究,了解其结构并建立计算模式;多相流动;流体和结构物的相互作用;边界层流动和分离;生物地学和环境流体流动等问题;有关各种实验设备和仪器等。
ASK - ASAHI - AET - BARDEN - DKF - EASE - FAFNIR - FYH - FAG - GMN - INA - IKO - KINGON - KOYO - MRC - MAC - NTN - NACHI - NSK - NMB - RIV - RHP - SKF - SYEYR - STEYR - SNR - SNFA - SNF - TORRINGTON FAFNIR - TORRINGTON - TIMKEN - THK - ZKL